Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Braz. j. biol ; 842024.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469282

ABSTRACT

Abstract Lactobacilli are probiotics with Aflatoxin (AF) detoxification ability, found in fermented products, GIT of animals and environment. Purpose of this study was to investigate the ability of broiler isolates of Lactobacillus against Aflatoxin B1 (AFB1). For this purpose, 5 isolates of Lactobacillus from broiler gut were incubated with 100 ppb AFB1 in aqueous environment and effect of different parameters (cell fractions, time, temperature, pH) on detoxification was determined by HPLC. The ameliorative effect of Lactobacillus salivarius (LS) against AFB1 was studied in broiler. The results revealed that LS (CR. 4) showed the best results (in vitro) as compared to other isolates (L. salivarius (CR. 3, CR, 4), L. agilis (CE. 2.1, CE. 3.1) and L. crispatus (CE. 28). Cell debris of CR. 4 showed significantly higher detoxification (P 0.05). Maximum amount of AFB1 was detoxified at 30°C (97%), pH 4.0 (99%) and 6 h (99.97%). In vivo study showed that AFB1 decreased weight gain (1,269 ± 0.04 gm/ bird), feed consumed (2,161 ± 0.08 gm/ bird), serum total protein (2.42 ± 0.34 gm/ dl), serum albumin (0.5 ± 0.2 2 gm/dl) and antibody titer (4.2 ± 0.83). Liver function enzymes were found (alanine transaminase (ALT): 32 ± 10.7 U/L) and aspartate transaminase (AST): 314.8 ± 27 U/L) elevated in AFB1 fed broilers. Treatment with 1% LS not only decreased the toxic effects of AFB1 (group D) but also improved the overall health of broilers due to its probiotic effects (p 0.05) as compared to control negative (group A). The detoxification ability of LS was better than commercial binder (CB) (0.2% Protmyc). It was concluded that detoxification of AFB1 by Lactobacillus was strain, temperature, pH and time dependent. LS has detoxification ability against AFB1 in vivo.


Resumo Os lactobacilos são probióticos com capacidade de desintoxicação da Aflatoxina (AF), encontrados em produtos fermentados, TGI de animais e meio ambiente. O objetivo deste estudo foi investigar a capacidade de isolados de frango de corte de Lactobacillus contra a Aflatoxina B1 (AFB1). Para tanto, 5 isolados de Lactobacillus de intestino de frango foram incubados com 100 ppb AFB1 em meio aquoso, e o efeito de diferentes parâmetros (frações celulares, tempo, temperatura, pH) na desintoxicação foi determinado por CLAE. O efeito melhorador de Lactobacillus salivarius (LS) contra AFB1 foi estudado em frangos de corte. Os resultados revelaram que LS (CR. 4) apresentou os melhores resultados (in vitro) em comparação com outros isolados [L. salivarius (CR. 3, CR. 4), L. agilis (CE. 2.1, CE. 3.1) e L. crispatus (CE. 28)]. Detritos celulares de CR. 4 mostraram desintoxicação significativamente maior (P 0.05). A quantidade máxima de AFB1 foi desintoxicada a 30 °C (97%), pH 4.0 (99%) e 6 h (99,97%). O estudo in vivo mostrou que AFB1 diminuiu o ganho de peso (1,269 ± 0.04 g / ave), alimento consumido (2,161 ± 0.08 g / ave), proteína total sérica (2.42 ± 0.34 g / dl), albumina sérica (0.5 ± 0.22 gm / dl) e título de anticorpo (4.2 ± 0.83). As enzimas da função hepática foram encontradas (alanina transaminase (ALT): 32 ± 10.7 U / L) e aspartato transaminase (AST): 314.8 ± 27 U / L) elevadas em AFB1 alimentados com frangos. O tratamento com 1% LS não só diminuiu os efeitos tóxicos de AFB1 (grupo D), mas também melhorou a saúde geral dos frangos devido aos seus efeitos probióticos (p 0.05) em comparação com o controle negativo (grupo A). A capacidade de desintoxicação do LS foi melhor do que o aglutinante comercial (CB) (0.2% Protmyc). Concluiu-se que a desintoxicação de AFB1 por Lactobacillus foi dependente da cepa, temperatura, pH e tempo. LS tem capacidade de desintoxicação contra AFB1 in vivo.

2.
Braz. j. biol ; 84: e250517, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1355859

ABSTRACT

Abstract Lactobacilli are probiotics with Aflatoxin (AF) detoxification ability, found in fermented products, GIT of animals and environment. Purpose of this study was to investigate the ability of broiler isolates of Lactobacillus against Aflatoxin B1 (AFB1). For this purpose, 5 isolates of Lactobacillus from broiler gut were incubated with 100 ppb AFB1 in aqueous environment and effect of different parameters (cell fractions, time, temperature, pH) on detoxification was determined by HPLC. The ameliorative effect of Lactobacillus salivarius (LS) against AFB1 was studied in broiler. The results revealed that LS (CR. 4) showed the best results (in vitro) as compared to other isolates (L. salivarius (CR. 3, CR, 4), L. agilis (CE. 2.1, CE. 3.1) and L. crispatus (CE. 28). Cell debris of CR. 4 showed significantly higher detoxification (P<0.05). Maximum amount of AFB1 was detoxified at 30°C (97%), pH 4.0 (99%) and 6 h (99.97%). In vivo study showed that AFB1 decreased weight gain (1,269 ± 0.04 gm/ bird), feed consumed (2,161 ± 0.08 gm/ bird), serum total protein (2.42 ± 0.34 gm/ dl), serum albumin (0.5 ± 0.2 2 gm/dl) and antibody titer (4.2 ± 0.83). Liver function enzymes were found (alanine transaminase (ALT): 32 ± 10.7 U/L) and aspartate transaminase (AST): 314.8 ± 27 U/L) elevated in AFB1 fed broilers. Treatment with 1% LS not only decreased the toxic effects of AFB1 (group D) but also improved the overall health of broilers due to its probiotic effects (p<0.05) as compared to control negative (group A). The detoxification ability of LS was better than commercial binder (CB) (0.2% Protmyc). It was concluded that detoxification of AFB1 by Lactobacillus was strain, temperature, pH and time dependent. LS has detoxification ability against AFB1 in vivo.


Resumo Os lactobacilos são probióticos com capacidade de desintoxicação da Aflatoxina (AF), encontrados em produtos fermentados, TGI de animais e meio ambiente. O objetivo deste estudo foi investigar a capacidade de isolados de frango de corte de Lactobacillus contra a Aflatoxina B1 (AFB1). Para tanto, 5 isolados de Lactobacillus de intestino de frango foram incubados com 100 ppb AFB1 em meio aquoso, e o efeito de diferentes parâmetros (frações celulares, tempo, temperatura, pH) na desintoxicação foi determinado por CLAE. O efeito melhorador de Lactobacillus salivarius (LS) contra AFB1 foi estudado em frangos de corte. Os resultados revelaram que LS (CR. 4) apresentou os melhores resultados (in vitro) em comparação com outros isolados [L. salivarius (CR. 3, CR. 4), L. agilis (CE. 2.1, CE. 3.1) e L. crispatus (CE. 28)]. Detritos celulares de CR. 4 mostraram desintoxicação significativamente maior (P < 0.05). A quantidade máxima de AFB1 foi desintoxicada a 30 °C (97%), pH 4.0 (99%) e 6 h (99,97%). O estudo in vivo mostrou que AFB1 diminuiu o ganho de peso (1,269 ± 0.04 g / ave), alimento consumido (2,161 ± 0.08 g / ave), proteína total sérica (2.42 ± 0.34 g / dl), albumina sérica (0.5 ± 0.22 gm / dl) e título de anticorpo (4.2 ± 0.83). As enzimas da função hepática foram encontradas (alanina transaminase (ALT): 32 ± 10.7 U / L) e aspartato transaminase (AST): 314.8 ± 27 U / L) elevadas em AFB1 alimentados com frangos. O tratamento com 1% LS não só diminuiu os efeitos tóxicos de AFB1 (grupo D), mas também melhorou a saúde geral dos frangos devido aos seus efeitos probióticos (p < 0.05) em comparação com o controle negativo (grupo A). A capacidade de desintoxicação do LS foi melhor do que o aglutinante comercial (CB) (0.2% Protmyc). Concluiu-se que a desintoxicação de AFB1 por Lactobacillus foi dependente da cepa, temperatura, pH e tempo. LS tem capacidade de desintoxicação contra AFB1 in vivo.


Subject(s)
Animals , Aflatoxin B1/analysis , Aflatoxin B1/toxicity , Probiotics , Chickens , Lactobacillus , Animal Feed/analysis
3.
Int. j. morphol ; 40(4): 1134-1146, 2022. ilus, tab
Article in English | LILACS | ID: biblio-1405239

ABSTRACT

SUMMARY: The postmortem diagnosis of death by drowning is one of the most difficult issues in forensic pathology. We investigated possible evidence differentiating saltwater drowning from freshwater drowning by histopathological changes in brain, heart, lungs, liver, and kidneys tissues. A cross section descriptive study was carried out on eighteen 12-week-old male Wistar rats; they were divided equally into 3 groups. Group 1: control group; Group 2: death by drowning in freshwater; Group 3: death by drowning in saltwater. Immediately after death, all tested organs were removed and fixed for histopathological examination. The brain of freshwater group depicted degenerated neurocytes with dystrophic changes in the form of shrunken cell, pyknotic nuclei and deeply eosinophilic cytoplasm. The heart showed clear evidence of myocyte injuries in saltwater drowning compared to the control and freshwater groups. The kidneys of rats drown in saltwater revealed more glomerular destruction with no differences in tubulo-interstitial changes in comparison with those drown in freshwater. In the lungs, the changes in freshwater were restricted to the alveoli, and the bronchial changes were more distinctive in saltwater. No disturbed liver architecture was seen in both test groups, however hydropic degeneration, congested vessels, and sinusoids were more distinct in saltwater group. In conclusion, diagnostic differentiation between fresh and saltwater drowning was reliable in rats' lungs and heart with minimal differentiation in liver, kidneys, and brain. Further studies of drowning with different staining techniques will help to clarify the potential role of histopathological changes in body organs as indicator of drowning.


RESUMEN: El diagnóstico post mortem de muerte por ahogamiento es uno de los temas más difíciles de la patología forense. Investigamos la posible evidencia que diferencia el ahogamiento en agua salada del ahogamiento en agua dulce por cambios histopatológicos en los tejidos del cerebro, el corazón, los pulmones, el hígado y los riñones. Se realizó un estudio descriptivo de corte transversal en dieciocho ratas Wistar macho de 12 semanas de edad; se dividieron por igual en 3 grupos. Grupo 1: grupo control; Grupo 2: muerte por ahogamiento en agua dulce; Grupo 3: muerte por ahogamiento en agua salada. Inmediatamente después de la muerte, se extirparon todos los órganos analizados y se fijaron para el examen histopatológico. El cerebro del grupo de agua dulce mostró neurocitos degenerados con cambios distróficos en forma de células encogidas, núcleos picnóticos y citoplasma profundamente eosinofílico. El corazón mostró una clara evidencia de lesiones de miocitos en los ahogamientos en agua salada en comparación con los grupos de control y de agua dulce. Los riñones de ratas ahogadas en agua salada revelaron una mayor destrucción glomerular sin diferencias en los cambios túbulo-intersticiales en comparación con las ahogadas en agua dulce. En los pulmones, los cambios en agua dulce se restringieron a los alvéolos y los cambios bronquiales fueron más distintivos en agua salada. No se observó una arquitectura hepática alterada en ambos grupos de prueba, sin embargo, la degeneración hidrópica, los vasos congestionados y los sinusoides fueron más distintos en el grupo de agua salada. En conclusión, la diferenciación diagnóstica entre ahogamiento en agua dulce y salada fue confiable en los pulmones y el corazón de las ratas con una diferenciación mínima en el hígado, los riñones y el cerebro. Estudios adicionales de ahogamiento con diferentes técnicas de tinción ayudarán a aclarar el papel potencial de los cambios histopatológicos en los órganos del cuerpo como indicador de ahogamiento.


Subject(s)
Animals , Male , Rats , Saline Waters , Drowning/pathology , Fresh Water , Brain/pathology , Cross-Sectional Studies , Rats, Wistar , Forensic Medicine , Kidney/pathology , Liver/pathology , Lung/pathology
4.
Indian J Physiol Pharmacol ; 2006 Jan-Mar; 50(1): 90
Article in English | IMSEAR | ID: sea-106771
5.
RMJ-Rawal Medical Journal. 2004; 29 (1): 35-39
in English | IMEMR | ID: emr-175666
6.
Indian J Physiol Pharmacol ; 2003 Apr; 47(2): 212-6
Article in English | IMSEAR | ID: sea-107023

ABSTRACT

In clinical practice assessment of the mean QRS axis (MQRSA) provides information related either with hypertrophy of the ventricles or conduction blocks. The method adopted by clinicians i.e. the inspection of the QRS voltage in six of the limb leads has inherent element of subjectivity of approximately 10degrees. Moreover, in certain condition, when there is ambiguity about differentiation of left axis deviation assessed by inspection method in to either hypertrophy of left ventricles or complete/hemi block of the left bundle branches, accurate measurement of the axis becomes necessary to arrive at the correct diagnosis. Though a formula based on area under R wave and S-wave of the same QRS complex has been derived for accurate measurement of axis, considering its use in the computer software, working with ordinary electrocardiograph the only method for accurate measurement of the QRS axis is plotting method i. e. the net voltages in Lead-I, and III on their respective axes which is not practicable in clinical settings. Although, calculation of MQRSA by area method gives an accurate assessment of MQRSA, some authors prefer measurement of axis by voltage method, as in cases of the right ventricular hypertrophy with a broad S-wave calculation of axis by area method may give erroneous results. Hence, to obtain correct measurement of MQRSA, we have derived a simplified formula based on the net voltage of QRS complexes in Lead-I and Lead-III. The formula derived is as follows, Tan(theta) =(I + 2III) divided by sqrt [3I], where I and III represent net voltage in Lead-I and III, theta = angle subtended with the axis Lead-I. The value of theta can be found by using scientific calculator or the table. In case net voltage of QRS complex in Lead-I being negative, the value of the theta should be subtracted from 180degrees to find the angle of mean QRS vector.


Subject(s)
Humans , Mathematical Computing , Models, Cardiovascular , Vectorcardiography/instrumentation
7.
J Biosci ; 2003 Apr; 28(3): 349-58
Article in English | IMSEAR | ID: sea-110637

ABSTRACT

Host pathogen interaction results in a variety of responses, which include phagocytosis of the pathogen, release of cytokines, secretion of toxins, as well as production of reactive oxygen species (ROS). Recent studies have shown that many pathogens exert control on the processes that regulate apoptosis in the host. The induction of apoptosis upon infection results from a complex interaction of parasite proteins with cellular host proteins. Abrogation of host cell apoptosis is often beneficial for the pathogen and results in a successful host invasion. However, in some cases, it has been shown that induction of apoptosis in the infected cells significantly imparts protection to the host from the pathogen. There is a strong correlation between apoptosis and the host protein translation machinery: the pathogen makes all possible efforts to modify this process so as to inhibit cell suicide and ensure that it can survive and, in some cases, establish latent infection. This review discusses the significance of various pathways/steps during virus-mediated modulation of host cell apoptosis.


Subject(s)
Animals , Apoptosis/physiology , Baculoviridae/physiology , Oxidative Stress , Protein Biosynthesis , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Virus Diseases/metabolism , Virus Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL